Mathematical Economics (2019/2020)

Exercises 4

1. Suppose that we have two firms that face linear demand curve $p = 200 - \frac{1}{2}(y_1 + y_2)$ and their cost functions are $c_1(y_1) = \frac{1}{2}y_1^2$, $c_2(y_2) = 10y_2$, respectively.

a) Compute the Cournot equilibrium amount of output for each firm and firms' profits.

b) If firm 2 behaves as a follower and firm 1 behaves as a leader, compute the Stackelberg equilibrium amount of output for each firm and firms' profits.

Please repeat calculations if:

A)
$$p = 40 - \frac{1}{2}(y_1 + y_2);$$
 $c_1(y_1) = 2y_1^2;$ $c_2(y_2) = \frac{1}{2}y_2^2;$

B)
$$p = 30 - 3(y_1 + y_2);$$
 $c_1(y_1) = 3y_1;$ $c_2(y_2) = y_2.$

C)
$$p = 100 - 2(y_1 + y_2)$$
, $c_1(y_1) = 2y_1$, $c_2(y_2) = \frac{1}{4}y_2^2$.

D)
$$p = 40 - (y_1 + y_2),$$
 $c_1(y_1) = \frac{1}{4}y_1^2,$ $c_2(y_2) = 3y_2.$

2. The traders' utilities are given by $u^1(x_1, x_2) = x_1 x_2^2$ and $u^2(x_1, x_2) = x_1^{1/2} x_2^{1/2}$. Their initial endowments are the following $a^1 = (2,2)$ and $a^2 = (4,4)$. Traders come to a market and exchange commodities to maximize their utilities. Compute the price vector in equilibrium. Compare the utilities before and after the exchange.

Please repeat calculations if:

A)
$$a^1 = (1,4)$$
, $a^2 = (2,1)$, $u^1(x_1, x_2) = x_1^3 x_2$, $u^2(x_1, x_2) = x_1^{\frac{3}{2}} x_2^{\frac{3}{4}}$.

B)
$$a^1 = (10,10)$$
, $a^2 = (20,5)$, $u^1(x_1,x_2) = x_1^{2/3}x_2^{1/3}$, $u^2(x_1,x_2) = x_1^{1/3}x_2^{1/2}$.

C)
$$a^1 = (3,9)$$
, $a^2 = (1,3)$, $u^1(x_1,x_2) = x_1x_2^{1/3}$, $u^2(x_1,x_2) = x_1^3x_2$.