Multiple Regression Analysis

In multiple linear correlation and regression we use additional independent
variables (denoted X1, X2, ..., and so on) that help us better explain or predict the
dependent variable (Y). Almost all of the ideas we saw in simple linear correlation
and regression extend to this more general situation. However, the additional
independent variables do lead to some new considerations. Multiple regression
analysis can be used either as a descriptive or as an inferential technique

|Mult1'ple Regression and Correlation Analysis

The dependent variable Y is related to independent variables X1,Xz,...,Xk and the
error term e through the linear relationship
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where ap,ay,...,ax are unknown population parameters.
= There is no linearity among Xj,...,Xk (no collinearity assumption)
= The error term e has normal distribution with expectation (Ee=0) (normality)

» Variance of e does not depend on X1,...,Xk (homoscedasticity)

= In cross-sectional data analysis we infer about the unknown parameters using
random sample
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Multiple Regression and Correlation Analysis
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The parameters are estimated by the least squares method.
The least square relationship is written as
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Steps in multivariate regression analysis

1. Preliminary variable selection: if the correlation absolute
value between any two continuous explanatory variables
exceeds 0.7 skip one of them - the one having smaller
correlation with Y

. Check whether loglinear model gives better correlations

. Check model’s validity verifying the hypotheses.
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4. Skip non significant independent variables using t-test
Hy:a;=0 Hy:a; #0
. Redo the least squares for the final model
. Verify model assumptions (homoscedasticity and normality)

. Check if there are influential outlying observations -
influential outliers.
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Laboratory example

DATA3-7: Data for a Toyota station wagon (57 observations)
cost = cumulative repair cost in actual dollars (11 - 3425)
age = age of car in weeks of ownership (Range 5 - 538)
miles = miles driven in thousands (Range 0.8 - 74.4)

chst versus age [with least squares fit)

3500 . , .
_|_-'=-F|'+ ++
3000 FF
++
2500 - e
2000 —
1500 - j*“"
& Wt
¥ 1000 it f
500 +.|:F|"‘F

I L I
o 100 200 300 400 500



Add logarithms of variables (Gretl:Add\logs of selected vars) and compute correlation matrix

Correlation Coefficients, using the observations 1 - 57
5% critical value (two-tailed) = 0.2609 for n = 57

cost age miles
1.0000 0.9488 0.9265 cost
1.0000 0.9965 age
1.0000 miles

Correlation Coefficients, using the observations 1 - 57
5% critical value (two-tailed) = 0.2609 for n = 57

_cost [_miles |_age
1.0000 0.9711 0.9822 |_cost
1.0000 0.9971 | _miles
1.0000 |_age

We choose model with logarithms.

Model 1: OLS, using observations 1-57. Dependent variable: |_cost

coefficient std. error t-ratio p-value

const -0.898719 0.199045 -4.515 3.38e-05 ***
_age 1.41680 0.0365646 38.75 1.30e-041 ***

R-squared 0.964662, F test P-value(F) =1.30e-41
White's test for heteroscedasticity - Null hypothesis: heteroscedasticity not
present

with p-value = P(Chi-square(2) > 32.2411) = 9.97572e-008



Make diagnostic plots:
Graphs\Fitted actual plot\against |_age
Graphs\Residual plot\against |_age

Conclusion: First observation is an outlier and it should be removed

After outlier removal

Model 3: OLS, using observations 2-57 (n = 56)
Dependent variable: |_cost

coefficient std. error t-ratio p-value

const -1.49829 0.186139 -8.049 8.21e-11***
|_age 1.52391 0.0339184 44.93 1.85e-44***

R-squared 0.973946 Adjusted R-squared 0.973463
F(1, 54) 2018.580 P-value(F) 1.85e-44

White's test for heteroskedasticity - Null hypothesis:
heteroskedasticity not present
with p-value = P(Chi-square(2) > 9.91542) = 0.00702901

Your task
Choose multivaraite data of your interest
and

make a complete data analysis using multivariate
regression model



